Fwd: Energy from Solar Panels



Subject: Energy from Solar Panels
Date: Tue, 21 Apr 2009 03:41:01 EDT

—– Original Message —–

Sent: Monday, April 20, 2009 12:28 PM
Subject: AIAS Inquiry from AIAS website

Content-Transfer-Encoding: 7bit The following is an inquiry from the AIAS contact page: Name Paul Phone Email paul1234] at [mail.com Goal Question for Myron Comment Dear Dr. Evans,

Has this type of experiment been addressed through ECE yet?

Thank you,


“Victor Klimov in Los Alamos National Laboratory in New Mexico has constructed a solar cell which can absorb the light of a specific wave length in such a way, that one photon can energize more than one electron. As soon as the electron absorbs a photon, it disappears for a very short moment into the quantum field. Being in the virtual state the electron can borrow energy from the vacuum and thereafter appears again in our reality. Now the electron can energize up to 7 other electrons. This leads to a theoretical coefficient of performance (COP) of 700%. A COP = 200% can be readily achieved and it has been. The experiment has also been replicated successfully by the National Renewable Energy Laboratory in Golden Colorado. [Herb Brody, “Solar Power – Seriously Souped Up.” New Scientist, May 27, 2006, p 45].

Additional references on Klimov solar cells:

a. Richard D. Schaller, Vladimir M. Agranovich and Victor I. Klimov; “High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states.” Nature Physics Vol. 1, 2005, pp. 189-194.

b. Richard D. Schaller, Melissa A. Petruska, and Victor I. Klimov; “Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals”; Appl. Phys. Lett. Vol. 87, 2005, 253102.

c. Richard D. Schaller, Milan Sykora, Jeffrey M. Pietryga, and Victor I. Klimov, “Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers,” Nano Lett. Vol. 6, 2006, p. 424.

d. Victor I. Klimov, “Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals,” Annual Review of Physical Chemistry, Vol. 58, No. 1, 2007, p. 635.

e. M. C. Hanna, A. J. Nozik. “Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers,” Journal of Applied Physics, vol. 100, No. 7, 2006, p. 07450.

f. Sung Jin Kim, Won Jin Kim, Yudhisthira Sahoo, Alexander N. Cartwright, Paras N. Prasad, “Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor,” Applied Physics Letters, Vol. 92, No. 3, 2008, p. 031107.

g. Alberto Franceschetti, Yong Zhang, “Multiexciton Absorption and Multiple Exciton Generation in CdSe Quantum Dots,” Physical Review Letters, Vol. 100, No. 13, 2008, p. 136805.

h. G. Allan, C. Delerue, “Role of impact ionization in multiple exciton generation in PbSe nanocrystals,” Physical Review B, Vol. 73 (20), 2006, p. 205423.

i. Hsiang-Yu Chen, Michael K. F. Lo, Guanwen Yang, Harold G. Monbouquette, Yang Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene,” Nature Nanotechnology, Vol. 3 (9), 2008, p. 543.

j. M.C. Beard, R.J. Ellingson, “Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion,” Laser & Photonics Review, Vol. 2, No. 5, 2008, p. 377. Quoting:

“Now Victor Klimov and colleagues at the Alamos National Laboratory have designed nanocrystals with cores and shells made from different semiconductor materials in such a way that electrons and holes are physically isolated from each other. The scientists said in such engineered nanocrystals, only one exciton per nanocrystal is required for optical amplification. That, they said, opens the door to practical use in laser applications.” [“Scientists Create New Type of Nanocrystal,” PHYSORG.COM, Nanotechnology, May 24, 2007].

k. Seo, Hye-won; Tu, Li-wei; Ho, Cheng-ying; Wang, Chang-kong; Lin, Yuan-ting. “Multi-Junction Solar Cell,” United States Patent 20080178931, July 31, 2008. A photovoltaic device having multi-junction nanostructures deposited as a multi-layered thin film on a substrate. Preferably, the device is grown as InxGa1-xN multi-layered junctions with the gradient x, where x is any value in the range from zero to one. The nanostructures are preferably 5-500 nanometers and more preferably 10-20 nanometers in diameter. The values of x are selected so that the bandgap of each layer is varied from 0.7 eV to 3.4 eV to match as nearly as possible the solar energy spectrum of 0.4 eV-4 eV.

l. J. R. Minkel, “Brighter Prospects for Cheap Lasers in Rainbow Colors,” Scientific American (website), May 25, 2007.

m. Quoting Victor Klimov: “Carrier multiplication actually relies upon very strong interactions between electrons squeezed within the tiny volume of a nanoscale semiconductor particle. That is why it is the particle size, not its composition that mostly determines the efficiency of the effect. In nanosize crystals, strong electron-electron interactions make a high-energy electron unstable. This electron only exists in its so-called ‘virtual state’ for an instant before rapidly transforming into a more stable state comprising two or more electrons.” [Lead project scientist Victor Klimov, quoted in “Nanocrystals May Provide Boost for Solar Cells, Solar Hydrogen Production,” Green Car Congress, 4 Oct., 2008.]

Location Sender IP

Many thanks, this looks like an interesting experiment and these are very useful references. In ECE theory this type of experiment would be addressed in papers such as 85 to 87 using spin connection resonance of the radiative corrections. The energy in ECE theory comes from the background voltage density cA(0) which is observed in the radiative corrections. Also papers 18 – 21 and 83 are relevant for the mechanism of interaction of a fermion with the photon. Two ECE equations are solved simultaneously. ECE does not use the idea of virtual photons because of the severe problems with QED encountered in paper 85. It uses a causal, deterministic, approach to the quantized interaction of the photon and electron.


%d bloggers like this: