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ABSTRACT

A novel antisymmetry law of Cartan geometry is developed from the fundamental
antisymmetry of the commutator of covariant derivatives acting on any tensor in any
spacetime. The law is illustrated with respect to new fundamental antisymmetries of the
curvature and torsion tensors and curvature and torsion forms, These laws are expressed in
vector format and developed for use with the Einstein Cartan Evans (ECE) theory of
¢lectrodynamics. The ECE electrodynamical laws are summarized for ease of reference. Their
Hodge dual structures are developed and also summarized, and the fundamental properties of
the ECE potential added to the ECE engineering model. The antisymmetry constraints are
developed by Lindstrom and Eckardt in Section 3 for use with computer simulation of new
energy and counter gravitational devices. Tesla resonance is recognized 1o be the various spin

connection resonances of the ECE engineering model.
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. INTRODUCTION

In recent papers of this series {1-10} on the Einstein Cartan Evans (ECE) field
theory novel antisymmetry laws have been developed from the well known antisymmetry of
the commutator of covariant derivatives acting on any tensor in any spacetime of any
dimension {11} . These laws are straightforward to understand but are powerful constrainis
on electrodynamics and gravitation. They show that theories of gravitation are incorrect
fundamentally if they neglect spacetime torsion, and theories of electromagnetism are
incorrect if they are based on U(1) gauge symmetry. They introduce a fundamentally new
antisymmetry law into Cartan geometry itself, and this is developed in Section 2 in
differential form, tensor and vector notations. The vector format of this law is used to
summarize the ECE laws of electrodynamics which are the basis of the ECE engineering
model {1-10}. The latter is the only theory of electrodynamics capable of describing Tesla
resonance {12}, a useful source of electric power. In Section 3 the Hodge dual structures of
the ECE field theory are summarized and reviewed, and the properties of the ECE
electromagnetic potential summarized for use with the engineering model. In Section 4. the
Lindstrom constraint of paper 133 is developed to produce a completely defined or well
posed problem for use with computer simulation of devices taking electric power from
spacetime through Tesla resonance, and for computer simulation of devices that produce

counter gravitation.

2. GEOMETRICAL ANTISYMMETRY LAWS AND APPLICATION TO PHYSICS.
P

Consider the action of the commutator of covariant derivatives on the vector V

in any spacetime of any dimension:
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This equation is identically antisymmetric:
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Therefore when we consider D__, q ) every term on the right hand side of Eq. ( 5 )
must change sign when:

In the limit of Minkowski spacetime:

b (0.5 = R (27D -0
in which case: ) (J,V’ﬁ o )J(Q/*V’) '"(f)

/-

However, in Minkowski spacetime, by coordinate orthogonality:
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For example, consider the position vector in two dimensions:
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where R l’}a is the curvature tensor of any spacetime in any dimension, and where T is

its torsion tensor. Therefore:



If it is asserted for the sake of argument that:
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The connection is not a tensor because it does not transform as a tensor under the general

coordinate transformation {1-11}, but its lower two indices define a matrix for each /..,.o .
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so Eq. ( \g ) is not true, Q.E.D. Therefore: }\
o ()
TR N
I~ s
Egs. ( \S Jand ( \( ) are proven in the same way and are also directly the result of the

antisymmetry of the commutator:
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There is no symmetric part 1o the coxmnutator,. which means that if the indices /b. and -~
are the same, the commutator vanishes, and so do ALL_thc terms on the right hand side of
Bas. ( S)and ( |\,

The standard model {11} assumes incorrectly that only certain sums or differences

of terms are antisymmetric, i.e. il assumes: . ')\ ——-}\ (J S‘)
R f.’:’”. = - R d".-t/, ) T = T ‘ -;l-.
)N

where R d“)... is the sum of four terms and T /‘_. is the difference of two terms. The

standard model compounds these errors by assuming that
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commutator vanishes, and all terms on the right hand side of Eq. ( \\3) vanish.

The correct antisymmetry of the identically non-zero torsion tensor is:
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in which the connection is identically antisymmetric. The correct antisymmetries of the
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Therefore there exists the novel identity of Riemann geometry: P
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Restoring the {0 and O indices we recover Egs.( 5\ )and( }3 ). These are the
fundamental equations of Riemann geometry in veetor format, with the novel antisymmetry
constraints of previous work included.

Similarly, geometrical antisymmetry is fundamentally important o Cartan geometry,

notably to the first Cartan Maurer structure equation:
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and the second Cartan Maurer structure equation:
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in standard {11} differential form notation. Here T " is the torsion form. d " is the exterior
a e a
derivative, q is the tetrad form, @ Y is the spin connection form and R\ is the curvature
form. Considering the torsion, Eq. ( S0 ) in tensor notation is:
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The torsion is defined in terms of the tetrad and spin connection, which are both four-vectors
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in a four dimensional spacetime. The four derivative is defined with a sign change as
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which is the first Cartan Maurer structure equation in terms of vectors,
In paper 133 of the ECE series (www aias.us) it was shown that the fundamental
tetrad postulate of Cartan geomeltry {1-11} may be expressed as:
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The fundamental antisymmetry { Q.3 ) therefore implies that;
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which is a novel and fundamental constraint on the first Cartan Maurer structure equauon
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In tensor notation, Eq. ( h } is:
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where the time-like part of the current is; (
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The homogeneous field equations of ECE electrodynamics, and of the ECE

1L
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engineering model, are based directly on this geometry {1-11}. It is also known from recent
work that the field equations must be constrained by antisymmetry (Eq. ( Lg) in tensor
notation). The basic ECE hypothesis is:
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where cA  has the units of volis and in ECE theory is a basic property of the vacuum
observable in the radiative corrections and also in Tesla resonance. In general, the

homogeneous field equations are:
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magnetic four current density. There is no geometrical reason why j should be zero in

general. From experimental data in the laboratory, it is c_laimcd that:
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Accepting this claim for the sake of argument, it follows that the homogeneous field

equations in vector notation are:
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The Hodge duality between these tensors is defined (see section 3) as:
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where G’ is the totally antisymmetric f.our-dimeusional unit tensor defined by: .
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3. HODGE DUALITY, INHOMOGENEOUS FIELD EQUATION AND
ELECTROMAGNETIC POTENTIAL.

The Hodge duality ( %\,\_] means that for each a, elements of the field tensor and
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It is seen that this is a re-arrangement of a four dimensional antisymmetric tensor to give

another four dimensional antisymmetric tensor, The indices in Eq. ( K‘ ) are in cyclic

permutation:
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Egs. ( KL )and ( %_1 ) mean that there are two ways of writing an antisymmetric tensor in

four dimensions, The basic field tensors of the ECE engineering model are therefore related
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Consider the fundamental commutator structure of Riemann geometry:
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Raising indices term by term gives:
(O™, 01N = RN -
The Hodge duals of the terms appearing in this equation an: ’dcrﬂ.ned as follows:
J
T R V7 = 4, D0, of(N7
|
% P 3 I a6/‘--*#" Rff ; P
Mpo ey
T/‘___' - —‘in"hh {/'h_“,fp—r

where “ab“ is the square root of the modulus or positive value of the determinant of
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the metric {1-11}. This is a weighting factor used to define the Hodge dual in the general four
dimensional spacetime. In Eq. ( C\\ ) it cancels out however. By definition {1-11}, the
antisymmetric tensor in Eqs. ( I‘-\L:) to( c“-\-) is the Minkowski spacetime tensor.
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and the commutator has been rearranged. Its indices have been changed from 2,3 to 0,1 using

an antisymmetric unit tensor, Therefore:

L9, 0y = L02, D4l
[ O, D;&T; 103 - ("\E)
EDo }-.SHD LD‘ 01

LO\, ﬂ\m L03 D_l

L0, O wp LD:‘ DX
\10;“);&“0 - \-G‘JDJ

SF
and Eq. ( G\S]Lsancxampieoqu ( o\ﬁj This means that the tensors R ‘}-r‘and

~ A

R h N
- are related to each other in the same way as the tensors }.-' and T-

s
The way that R i;._,,and “;’ are related to each other is given by the Cartan Bianchi

identity:
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which is the Cartan Evans identity, In tensor notation Eq. ( ﬁﬂ ) becomes the homogeneous

field equation of ECE theory, and Eq. ( 100 ) becomes the inhomogeneous field equation
These are respectively:
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For each a in these equations: - ~— 1
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In tensor notation, and using the fundamental ECE hypothesis ( -T_l ). these equations

become the homogeneous field equation of ECE electrodynamics:
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and the inhomogeneous field equation: ( {
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If the experimental claim for the absence of magnetic four current density is accepted, then;
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In vector notation:
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Note carefully that the vector notation subsumes the existence of the metric. The latter is not
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known in general because the equations are not wrilten in a Minkowski spacetime. They are
wrilten in a general spacetime. The metric is used to raise and lower indices {1-11} as usual,

so care has (o be taken to use a consistent scheme of calculation throughout. See the

accompanying notes for paper 134 for more details.
As in previous work the electric and magnetic fields are related to the potential four

vector and spin connection four vector, giving the following results:
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The potential four vector of ECE theory is a vector valued one-form, i.e. a mixed index rank

two tensor which is a one-form for each a:
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For each a therefore, fL is the time-like and scalar valued potential in volts, and for e¢ach
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and {‘\ is scalar-valued for each a. Quantities such as A t=12 } are
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components of the space-like three-vector part of the four-vector A for each a. If the

complex circular basis is used then by definition the following components vanish:
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By definition, the electric and magnetic fields are space-like three-vectors, in which:
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The magnetic field of the ECE engineering model is therefore:
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In the definition of the electric field the components H o appear. They are time-

like and scalar-valued for all a. In summary:
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Therefore % " is the scalar potential of a scalar wave and % are scalar potentials

(D - O (D, ). ~(ns)

In the next section the antisymmetry laws will be applied to this engineering model in order to

for waves of polarizations:

define a well posed problem for the computer simulation of devices.
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