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ABSTRACT 

           The two Cartan structure equations are proven straightforwardly through use of a 

simplified format for the tetrad postulate. In so doing a new general condition on Cartan’s 

differential geometry is discovered and illustrated with respect to the tetrads of a propagating, 

circularly polarized, wave.  
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1. INTRODUCTION 

                 The first and second Cartan structure equations define the torsion and curvature 

forms of differential geometry and are equivalent to the Riemannian torsion and curvature (1-

10}. They show the rigorous and complete internal self-consistency of Cartan geometry and 

illustrate the role played by the Cartan tetrad and the Cartan tetrad postulate. It is therefore 

important to be able to prove the structure equations as simply and as clearly as possible and 

to be able to prove their equivalence to nineteenth century Riemann geometry. The role of the 

� index of Cartan geometry is also clarified and well illustrated by these proofs, which are 

given in Section 2. In Section 3 the proof of the second structure equation is illustrated with 

reference to the tetrad of the propagating and circularly polarized wave. If a geometry is 

internally self-consistent it stands as such and may be used in the philosophy of general 

relativity as in ECE theory to give new physics and unify older concepts of physics.  

 

2.  PROOFS OF THE STRUCTURE EQUATIONS OF CARTAN   

                 In the standard notation {1} of differential geometry the first Cartan structure 

equation is:  

                                                                �� =  � ∧ �� + �	
� ∧ �	                                     (1) 

where ��  is the torsion form, a vector valued two-form, �� is the tetrad form (a vector valued 

one-form), �	
�  is the Cartan spin connection, and d ∧ is the exterior derivative. In tensor 

notation this notation translates into:  

                                                         ���
�  = 
� ��

� − 
� ��
� + ��	

� ��
	 − ��	

	 ��
	                         (2) 

The proof is now given of the equivalence of Eq. (2) and the Riemannian torsion:  

                                                         ���
�  = Г��

�  − Г��
�                                                               (3) 

where ���
�  is the Riemannian torsion and where Г��

�  is the Riemannian connection. The 



advantage of Eq. (2) over Eq. (3) is that Eq. (2) uses an index � that may be developed with 

any basis elements such as the Pauli matrices of Dirac theory. In Paper 141 of this series it 

was shown that the � index may be used to denote the complex circular basis, where it has a 

profound meaning in that it extends the Helmholtz Theorem.  

                The equivalence of Eqs. (2) and (3) originates in the fundamental property that the 

complete vector field is independent {1-10} of its coordinates and basis elements:        

                                                           V = �� �� = �� ��                                                        (4) 

This is always the case in physics and general relativity. Without the property (4) a three 

dimensional vector field for example would be different in Cartesian or spherical polar 

coordinates. The property (4) leads to the equation:  

                                                     �� ��
� =  
� ��

� + ��	
� ��

	 − Г��
�  ��

�                                     (5) 

This is confusingly and obscurely known as “the tetrad postulate”{1}. Eq.(5) is 

fundamentally true in physics and in almost all of mathematics, and is not a postulate. It 

follows from the property (4) {1-10}. Using the rules {1}:   

                                                        ���
�  = ��	

�  ��
	                                                                   (6) 

                                                    Г��
�  ��

� =  Г��
�   ,                                                                    (7) 

the tetrad postulate simplifies to:  

                                                         Г��
�  = 
� ��

� + ���
�                                                            (8) 

and the first Cartan structure equation simplifies to:  

                                                         ���
�  = Г��

�  − Г��
�                                                               (9) 

It follows immediately that the Riemannian torsion is:  

                                                         ���
�  = ��

� ���
�  =  Г��

�  − Г��
�                                             (10) 

Q.E.D.  

                The Cartan and Riemann torsions are both very fundamental concepts of geometry, 



in any space, of any dimensions. The Riemann torsion is always present in any space, and is 

defined by the commutator of covariant derivatives in any space of any dimension {1-10}:    

                                             [�� , �� ]  Vρ  
=  ����

� Vσ 
 −  ���

�
 ��Vρ  

                         (11) 

  

Here Vρ
  is any vector, ����

�
is the Riemannian curvature and ��Vρ  

is the covariant derivative 

of  Vρ 
 .  From Eq. (11) it is obvious that the Riemannian connection must be antisymmetric:  

                                                                     Г��
�  =  − Г��

�                                                      (12) 

because the indices  µ and  ν  are the same on both sides of the equation and because the 

commutator is antisymmetric by definition {1-10}. The connection can never be symmetric 

because the commutator can never be symmetric and at the same time non-zero.  

The second Cartan structure equation {1-10} is:  

                                                                      �	
� = d ∧ �	

� + ��
� ∧ �	

�                        (13) 

where �	
� is the curvature form (a tensor valued two-form).  In tensor notation Eq. (13) is: 

                                              �	��
�  = 
���	

�  − 
���	
� + ���

�  ��	 
� − ���

�  ��	
�                  (14) 

and it is now proven that this equation is equivalent to the Riemann curvature:  

                                              ����
�

 = 
�Г��
�

 − 
�Г��
�

+ Г��
�

 Г��
� − Г��

�
 Г��

�                     (15) 

Start the proof by noting that:  

                                                ��	
�  = �	

����
�  = Г�	

�  − �	
� 
���

�      

                                                        =  Г�	
�  −  
��	

�                                                               (16) 

Note that:  

                                                            �	
� 
���

� = 
��	
�                                                         (17) 

because the tetrad multiplies a rank three mixed index tensorial quantity  
���
� . 

 

 Therefore:  
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�  = 
�Г�	

�  − 
�Г�	
� + Г��

�  Г�	 
� − Г��

�  Г�	
�  − (
�
� − 
�
�) �	

�          

                                    − Г�	 
� 
���

� − Г�	 
� 
���

�  + Г�	 
� 
���

� + Г�	 
� 
���

�  

                           = 
�Г�	
�  − 
�Г�	

� + Г��
�  Г�	 

� − Г��
�  Г�	

�                                            (18) 

Finally use:   

                                            ����
�

 = ��
�

 ��
	 �	��

�                                                   (19) 

and 

                                                           Г��
�

 Г�� 
� =  ��

� ��
�  Г��

�
 Г�� 

� = Г��
�

 Г�� 
�                   (20) 

to obtain Eq. (15), Q.E.D.  

This is a much simpler and clearer proof than one previously given in an appendix of Paper 

15 of the ECE series.  

             By the rules of Cartan geometry it follows that:  

                                                                 �	
� = ��

�  �	
�

                                                           (21) 

so using the Leibniz Theorem:  

                                                             
��	
� = �	

�
 
���

� + ��
� 
� �	

�
                                      (22) 

The tetrad �	
�  in a Minkowski spacetime is unit diagonal:  

                                                                            1    0    0    0 

                                                                �	
�  =   0    1    0    0                                                (23) 

                                                                            0    0    1    0 

                                                                            0    0    0    1 

so:  

                                                             
��	
� = 0                                                                    (24) 

From Eqns. (17) and (22) it follows that:  

                                                         ��
�
��	

�
 = 0                                                                   (25) 

and this is a new condition or constraint on Cartan geometry because the latter uses the index 

� to denote a Minkowski spacetime {1-10}. In ECE theory the potential is defined in terms of 

the tetrad {2-10}, so for example the electromagnetic potential is:  



                                                                 ��
� = A(0) ��

�  
                                                          (26) 

Therefore:  

                                                       ��
� 
� �	

�
 = 0                                                                   (27) 

and this is a new general constraint on the electromagnetic potential in ECE theory. Similarly, 

in gravitational theory:  

                                                     Φ�
� 
�  Φ	

�
 = 0                                                                   (28) 

where Φ�
� is the gravitational potential. Eq. (8) and (25) show that:  

                                                                Г�	
�  = ω�	

�                                                                (29) 

so the equivalence of the Cartan and Riemann curvatures follows immediately.   

               Note that the metric tensor is defined in general by:  

                                                                 !� = "��!�                                                            (30) 

where !�  is the position four-vector:  

                                                                 !� = ( c t , X , Y , Z )                                                     (31) 

In Minkowski spacetime:  

                                                               1    0    0    0 

                                        "�� = "��=    0   -1    0    0                                                            (32) 

                                                               0    0   -1    0 

                                                               0    0    0   -1  

 

Eq. (30) can be expressed as:  

                                                   !� = g�
�

 !�                                                                          (33) 

where: 

                                                               1    0    0    0 

                                                   g�
�

 =    0    1    0    0                                                            (34) 

                                                               0    0    1    0 

                                                               0    0    0    1  

 

In Cartan’s differential geometry the tetrad is defined in general by {1-10}:  



                                                   �� =  q�
�  ��                                                                        (35) 

where V is any vector field. Eq (33) is a special case of Eq. (35):  

                                                    !� = q	
�  !	                                                                         (36) 

so it follows that:   

                                                               1    0    0    0 

                                          q	
�  = g	

�  =    0    1    0    0                                                            (37) 

                                                               0    0    1    0 

                                                               0    0    0    1  

 

Q.E.D.  

                 To exemplify Eq. (25) consider the following plane wave tetrads: 

                                                +(-)  =  
-

√/
 ( i i i i  - i  j j j j ) �23                                                                (38) 

and 

                                                       +(/)  =  
-

√/
 ( i i i i  + i  j j j j ) �423                                                             (39) 

 Eq. (39) is the complex conjugate of Eq. (38) and  5 is the phase of the plane wave. The 

complex circular basis is defined by:  

                                                      +(-) x +(/) = 6 +(7)∗                                           (40) 

 in cyclic permutation. 

Consider elements such as:   

                                                    q9
(-)

 = 
-

√/
 �23   ,    q:

(-)
 = 

42

√/
 �23                                          (41) 

                                                    q9
(/)

 = 
-

√/
 �423 ,    q:

(/)
 = 

2

√/
 �423                                        (42) 

and use the rule:  

                                                                   q�
�  q�

�
 = 1                                                            (43) 

of Cartan geometry to find that:   

                                          q9
(-)

 q(-)
9  + q:

(-)
 q(-)

:  + q9
(/)

 q(/)
9 + q:

(/)
 q(/)

:  = 1                          (43a) 



A solution of Eq. (43) is:  

                                                    q(-)
9  = 

-

√/
 �423   ,    q(-)

:  = 
2

√/
 �423     ,                                 

                                                     q(/)
9  = 

-

√/
 �23    ,    q(/)

:  = 
42

√/
 �23                                        (44) 

Consider an example of Eq. (25):  

                                                  ��
�
��	

�
 =  q9

(-)
� q(/)
9  + q:

(-)
� q(/)
:                                     (45) 

For:   

                                                                 ν = 0                                                                      (46) 

it follows that: 

                                                   q9
(-)
; q(/)

9  + q:
(-)
; q(/)

:  = 0                                              (47) 

For:  

                                                                 ν = 3                                                                      (48) 

it follows that:  

                                                   q9
(-)
7 q(/)

9  + q:
(-)
7 q(/)

:  = 0                                              (49) 

Consider a second example of Eq. (25):  

                                                 ��
�
��	

�
 = q9

(/)
� q(-)
9 + q:

(/)
� q(-)
:                                        (50) 

and it follows that:  

                                                      q9
(/)
; q(-)

9 + q:
(/)
; q(-)

: = 0                                             (51) 

and: 

                                                          q9
(/)
7 q(-)

9 + q:
(/)
7 q(-)

: = 0                                         (52) 

 

So the general constraint (25) has been tested with the tetrads of the circularly polarized plane 

wave, and a self consistent result found. This procedure illustrates the importance of 

simplicity and clarity in mathematics and shows that within its own terms of definition, the 



two structure equations, Cartan’s geometry is perfectly self consistent. Similarly, within its 

terms of reference, Euclid’s geometry is perfectly self consistent, or Riemann’s geometry is 

perfectly self consistent. It may be possible to have an ultra abstract geometry in which a 

vector field is not independent of its coordinate and basis elements, but that type of geometry 

merely adds abstraction and contravenes the most fundamental principle of general relativity, 

general covariance. There is no experimental evidence that such geometries have any role in 

nature. For example it may be possible to define manifolds other than that of Riemann, but 

again there is no evidence that these manifolds are relevant to natural philosophy (physics). 

The construction of such manifolds without any experimental evidence is contrary to the 

most fundamental rule of natural philosophy, Ockham’s Razor. In other words they are just 

mathematics for the sake of mathematics. String theory falls into the same category, and any 

theory that contains unobservables. The twentieth century is pockmarked with such failed 

theories. ECE theory on the other hand has been tested experimentally in many ways {2-10} 

and is fundamentally very simple, being based directly on Cartan geometry. It should not 

surprise anyone that all the equations of physics come out of geometry using Ockham’s 

Razor.  
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